翻訳と辞書 |
Kähler metric : ウィキペディア英語版 | Kähler manifold In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures; a complex structure, a Riemannian structure, and a symplectic structure. On a Kähler manifold ''X'' there exists Kähler potential and the Levi-Civita connection corresponding to the metric of ''X'' gives rise to a connection on the canonical line bundle. Smooth projective algebraic varieties are examples of Kähler manifolds. By Kodaira embedding theorem, Kähler manifolds that have a positive line bundle can always be embedded into projective spaces. They are named after German mathematician Erich Kähler. ==Definitions== Since Kähler manifolds are naturally equipped with several compatible structures, there are many equivalent ways of creating Kähler forms.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Kähler manifold」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|